[This question paper contains 4 printed pages.]

Your Roll No.....

H

Unique Paper Code 237352

Name of the Paper Real Analysis

5805

Name of the Course : B.Sc. (Hons.) Statistics Semester Semester

III

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

Sr. No. of Question Paper:

- Write your Roll No. on the top immediately on receipt of this question paper.
- Q. No. 1 is compulsory. 3.
- Attempt six questions in all.
- 1. (a) Write the Supremum and Infimum of the set

$$S = \left\{1 - \frac{1}{n}, n \in N\right\}$$

(i) Give an example of a set which is a neighbourhood of each of its points.

- (ii) Give an example of a set which is neither an interval
- (c) Show that arbitrary union of closed sets need not b
- (d) Examine the convergence of the series $\sum \cos \frac{1}{n}$.
- (e) What is an alternating series? Give an example.
- (f) Examine the continuity of the function $f(x) = [x], x \in [x]$
- (g) Find the value of c of Lagrange Mean Value Theorer for the function

$$f(x) = 1/x$$
 on [1 4] (2,2,2,2,3,2)

- 2. (a) Define a lower bound and an infimum of a non-empt bounded set S of real numbers. Prove that a real number t is the infimum of S iff
 - (i) $x \ge t \quad \forall x \in 5$
 - (ii) for each $\in > 0$, there is a real number $x \in$ such that $x < t + \in$.
 - (b) Define neighbourhood of a point and open set. Prov that the intersection of two open sets is open. (6,6)

- (a) State and prove Monotone Convergence Theorem.
- (b) Prove that $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$ exists and lies between 2 and 3.
- (a) State Cauchy's first theorem on limits. Use it to show that $\lim_{n\to\infty} \frac{1+2^{1/2}+3^{1/3}+...+n^{1/n}}{n}=1$

- (ii) a divergent series.
- Show that the series $1+r+r^2+...+...$ converges if 0 < r < 1. (6,6)
- (a) Let $\sum u_n$ be a positive term series such that $\lim_{n\to\infty}\frac{u_n}{u_{n+1}}=l$. Prove that the series $\sum u_n$ converges

if l > 1. What happens if l = 1?

P.T.O.

(a) State and prove Rolle's Theorem.

(c) Find the value of a that will make

(b) Obtain Maclaurin's series expansion of cos x.

f(x) = |x| + |x - 1| is continuous but not derivable at x = 0, x = 1.

 $\lim_{x\to 0} \left(\frac{\sin 3x - a \sin x}{x^3} \right)$ finite and hence find the limit

(5,4,³⁾